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How Effective Is Suffixing? 

Donna Harman* 
lister Hill Center for Biomedical Communications, National Library of Medicine, Bethesda, MD 20209 

The interaction of suffixing algorithms and ranking 
techniques in retrieval performance, particularly in an 
online environment, was investigated. Three general 
purpose suffixing algorithms were used for retrieval on 
the Cranfield 1400, Medlars, and CACM test collections, 
with no significant improvement in performance shown 
for any of the algorithms. A failure analysis suggested 
three modifications to ranking techniques: variable 
weighting of term variants, selective stemming depend- 
ing on query length, and selective stemming depending 
on term importance. None of these modifications im- 
proved performance. Recommendations are made re- 
garding the uses of suffixing in an online environment. 

introduction 

Traditional statistically based keyword retrieval systems 
have been the subject of experiments for over 30 years. 
The use of simple keyword matching as a basis for re- 
trieval can produce acceptable results, and the addition of 
ranking techniques based on the frequency of a given 
matching term within a document collection and/or within 
a given document adds considerable improvement (Sparck 
Jones, 1972; Salton, 1983). 

The conflation of word variants using suffixing al- 
gorithms was one of the earliest enhancements to statistical 
keyword retrieval systems (Salton, 1971), and has become 
so standard a part of most systems that many system 
descriptions neglect to mention the use of suffixing, or to 
identify the algorithm was used. Suffixing was originally 
done for two principle reasons: the large reduction in stor- 
age required by a retrieval dictionary (Bell, 1979), and the 
increase in performance due to the use of word variants. 
Recent research has been more concerned with perfor- 
mance improvement than with storage reduction. 

The NLM IRX (Information Retrieval Experiment) 
project (Benson, Goldstein, Fitzpatrick, Williamson, & 
Huntzinger, 1986; Harman, Benson, Fitzpatrick, 
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Huntzinger, & Goldstein, 1988) has been investigating 
how the performance bounds of traditional statistically 
based keyword retrieval systems might be extended. Some 
of the initial research was in ranking algorithms, both in 
determining what factors are important in ranking, and in 
effectively combining these factors to maximize perfor- 
mance (Harman, 1986). Subsequently, work has been done 
using the most common method of query/document 
enhancements: the conflation of word variants using stem- 

ming. This area was selected both because of the wide- 
spread use of stemming, and because the interaction of 
ranking techniques and stemming techniques has not re- 
ceived much experimental attention. Word stems have 
been used interchangably with full words, and little effort 
has been made to modify the ranking techniques to handle 
the problems posed in ranking when using a stemmer. The 
flexibility of the IRX retrieval system permits easy modifi- 
cation of the ranking routines to use all information from a 
query, allowing an investigation into the limits of retrieval 
using suffixing. 

Stemming Algorithms 

Most research done on suffixing has been in the area of 
producing new suffixing algorithms, particularly al- 
gorithms aimed at specific collections or subject areas. An 
excellent review of suffixing approaches was done for the 
OKAPI project (Walker & Jones, 1987). Major work has 
been done in the area of medical English (Pacak, 1978). A 
technique for developing a stemming algorithm for a spe- 
cific collection was devised for CITE, the NLM end-user 
interface to the CATLINE book catalog file (Ulmschneider 
& Doszkocs, 1983). Another technique for specific corpuses, 
which was developed by Hafer and Weiss (1974), used 
statistical properties of successor and predecessor letter 
variety counts. The goal of this research was not the devel- 
opment of a new stemming algorithm, but to enhance the 
performance of existing algorithms. 

Three algorithms, an “S” stemming algorithm, the 
Lovins (1968) algorithm, and the Porter (1980) algorithm, 
were selected for this research effort because they have 
different levels of word conflation, a variable that was ex- 
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petted to be significant in stemming performance. Al- 
though many other stemming algorithms exist, these three 
all have widespread usage in the information retrieval 
community. 

The “S” stemming algorithm, a basic algorithm conflat- 
ing singular and plural word forms, is commonly used for 
minimal stemming. The rules for a version of this stemmer, 
shown in Table 1, are only applied to words of sufficient 
length (three or more characters), and are applied in an or- 
der dependent manner (i.e., the first applicable rule en- 
countered is the only one used). Each rule has three parts; 
a specification of the qualifying word ending, such as “ies”; 
a list of exceptions; and the necessary action. 

The SMART system (Salton, 1971) uses an enhanced 
version of the Lovins stemmer that removes many different 
suffixes. This stemming algorithm operates in much the 
same manner as the S stemmer, although at a higher level 
of complexity. First, the longest possible suffix is found 
that allows the remaining stem to be of length 2 or greater. 
The resulting word stem is then checked against an excep- 
tion list for the given suffix, and, if passed, is processed 
into the final stem in a cleanup step. This cleanup step 
uses a set of rules to produce the proper word ending, such 
as removing a double consonant. The algorithm uses auxil- 
iary files containing a list of over 260 possible suffixes, a 
large exception list, and the cleanup rules. 

Porter (1980) developed a stemming algorithm that 
looks for about 60 suffixes, producing word variant confla- 
tion intermediate between a simple singular-plural tech- 
nique and Lovins algorithm. The multistep process uses a 
successive removal of short suffixes, rather than a single 
removal of the longest possible suffix. Fewer suffixes are 
recognized, and no exception list is checked, resulting in 
both a much simpler algorithm than the Lovins algorithm, 
and no auxiliary files for the suffixes and their accompany- 
ing exceptions list. 

As an example of stemmer differences, consider the 
word “heating,” which has no “S” stems, and therefore is 
not grouped together with any other words using this 
stemmer. If the Porter stemmer is used, the word “heating” 
stems to “heate,” which also happens to be the stem of the 
word “heated.” Therefore these two words are grouped to- 
gether for retrieval purposes. The Lovins algorithm stems 
the word “heating” to “heat,” and groups “heat,” “heated,” 
“heater,” “heating,” and “heats” together, as all these 
words stem to “heat” using this stemmer. 

In terms of storage, the “S” stemmer reduced the num- 
ber of unique terms for the Cranfield collection from 8460 

TABLE 1, The S stemmer. 

IF a word ends in “ies,” but not “eies” or “aies” 
THEN “ies” - “v” 

IF a word ends in “es,” but not “aes,” “ees,” or “oes” 

THEN “es” - “e” 

IF a word ends in 3,” but not “us” or ‘3s” 
THEN 3” - NULL 

full words to 7489 unique stems. The Porter stemmer had 
a reduction from 8460 to 6028, and the Lovins stemmer 
reduced the number of unique concepts from 8460 to 
5226. This could be important in an environment with lim- 
ited storage, or for operational systems with large text 
files, because the length of the inverted files would be re- 
duced as the number of unique terms is reduced. 

Modifications to IRX to Handle Suffixing 

The IRX retrieval system used in this study parses each 
query into noncommon terms. When a stemming algorithm 
is used, the noncommon terms are mapped to a list of all 
words contained in the document collection that have the 
same word stem (as defined by the particular stemming al- 
gorithm in effect). These additional word variants are then 
added to the query, and a list of all documents containing 
one or more of the query terms serves as input to the rank- 
ing algorithm. 

The ranking algorithm uses term weighting; that is, a 

document is ranked according to a normalized score 
formed by summing the weights of the terms occurring in 
the document that match terms in the query. This is 
equivalent to a weighted inner product between the query 
and the document. These weights are based on both the 
importance of the term within a given document (as mea- 

sured by the log, of the frequency of the term in that docu- 
ment), and on the importance of a term within the entire 
collection (as measured by either its noise value or its in- 
verse document frequency weight). The ranking equations 
are given in the Appendix, and details of the ranking 
method can be found in Harman (1986). 

Modifications to the ranking algorithm were required in 
order to reflect the traditional suffixing philosophy that all 
term variants for a given term be treated as a single con- 

cept. That is, the words “heat,” “heats,” “heater,” “heat- 
ing,” and “heated” are traditionally represented by single 
concept (using the Lovins stemming algorithm) and term 
occurrences are counted for that concept rather than for the 
individual terms. The ranking algorithm was modified in 
two ways to handle suffixes in this manner. First, the 
document frequency of an expanded term in a given docu- 
ment becomes the combined document frequencies for all 
term variants of that term in that document. Second, in- 
stead of using the noise and number of postings for a given 
term, as determined by input from the parser, a special file 
of noise values and number of postings had to be created 
for each stemmer to obtain the correct noise and number of 
postings. This file was created by calculating the noise 
measure based on the term distribution of all term variants 
(instead of a single term), and by calculating the number 
of postings for all term variants, rather than for a single 
term. The ranker had to do a file lookup for each query 
term to determine its noise and number of postings. These 
modifications allowed IRX to emulate traditional suffix- 
ing. The alternative would have required separate inverted 
files for each stemmer. 
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Evaluation 

Abstracts and titles from the Cranfield collection (with 
225 queries and 1400 documents), comprised the major 
test collection for this study. The Medlars collection 
(30 queries and 1033 documents), and the CACM collec- 
tion (64 queries and 3204 documents) were used to provide 
information about the variation of stemming performance 
across different subject areas and test collections. 

In addition to the standard recall/precision measures, 
with SMART system averaging (Salton, 1971), several 
methods more suited to an interactive retrieval environ- 
ment were adopted. The interactive environment returns 

lists of the top ranked documents, and allows the users to 
scan titles of a group of documents a screenful at a time, 
so that the ranking of individual documents within the 
screenful is not as important as the total number of rele- 
vant titles within a screen. Furthermore, the number of 
relevant documents in the first few screens is far more im- 
portant for the user than the number of relevant in the last 
screenfuls. Three measures were selected which evaluate 
performance at given rank cutoff points, such as those cor- 
responding to a screenful of document titles. 

The first measure, the E measure (Van Rijsbergen, 
1979), is a weighted combination of recall and precision 
that evaluates a set of retrieved documents at a given cut- 
off, ignoring the ranking within that set. The measure may 
have weights of 0.5, 1.0, and 2.0 which correspond, re- 
spectively, to attaching half the importance to recall as to 
precision, equal importance to both, and double impor- 
tance to recall. A lower E value indicates a more effective 
performance. 

A second measure, the total number of relevant docu- 
ments retrieved by a given cutoff, was also calculated. 
Cutoffs of 10 and 30 documents were used, with ten re- 
flecting a minimum number a user might be expected to 

TABLE 2. Retrieval performance for Cranfteld 225. 

scan, and 30 being an assumed upper limit of what a user 
would scan before query modification. 

The third measure applicable to the interactive environ- 
ment is the number of queries that retrieve no relevant 
documents by the given cutoff. This measure is important 
because many types of query modification techniques, 
such as relevance feedback, require relevant documents to 
be in the retrieved set to work well. These measures were 
all used in Croft (1983) as complementary measures to the 
standard recall/precision evaluation. 

Results 

Initial Stemming Results 

The results for the Cranfield collection are given in 
Table 2. It can be seen that there is a very significant in- 
crease in performance (42.4%) from a simple ranking tech- 
nique (number of term matches between the queries and 
the documents) to a technique using term weighting (full 
words and the noise ranking algorithm, see Appendix). 
None of the three suffixing techniques, however, achieve 
any further significant improvement over term weighting, 
using either the noise measure or the inverted document 
frequency measure for term weighting. This agrees with 

earlier results (Lennon, Peirce, Tarry, & Willett, 1981) 
using the Cranfield collection (titles only), and compar- 
ing the Lovins and Porter algorithms, when very little im- 
provement in retrieval performance was found. Both the 
noise measure and the inverse document frequency weight 
measure were used in this study to show that the research 
results apply using either measure of term distribution 
within an entire collection. 

The Medlars collection (Table 3) indicates a 22.2% im- 
provement in performance from a simple ranking tech- 

Average precision for three 
intermediate points of recall 

% Precision Change 
E, 0.5, 10 dots 
E, 1.0, 10 dots 
E, 2.0, 10 dots 

E, 0.5, 30 dots 
E, 1.0, 30 dots 
E, 2.0, 30 dots 

Number of queries that fail 
At 10 documents retrieved 
At 30 documents retrieved 

Total relevant retrieved 
At 10 documents retrieved 

At 30 documents retrieved 

Number 

of 

Matches 

0.265 

0.78 
0.77 
0.74 

0.87 
0.82 
0.73 

35 
16 

473 

784 

Full 

Words 

0.377 

42.4 
0.71 
0.68 
0.64 

0.84 
0.79 
0.67 

21 
9 

650 

946 

Best Noise Ranking 

Lovins Porter 

0.388 0.402 

45.2 49.2 
0.70 0.70 
0.68 0.68 
0.64 0.63 

0.83 0.83 
0.78 0.78 
0.66 0.67 

14 15 
8 8 

655 666 

984 972 

s 

0.397 

47.7 
0.70 
0.68 
0.64 

0.84 
0.78 
0.67 

15 
8 

654 

958 

Full 

Words 

0.368 

39. I 
0.72 
0.70 
0.65 

0.84 
0.79 
0.68 

21 
10 

628 

938 

Best idf Ranking 

Lovins Porter 

0.380 0.392 
41.3 45.7 

0.71 0.71 
0.69 0.69 
0.65 0.64 
0.84 0.84 
0.78 0.78 
0.67 0.67 

17 16 
7 6 

636 648 
958 956 

s 

0.391 

45.4 
0.71 
0.68 
0.64 

0.84 
0.79 
0.67 

15 
8 

651 

952 
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TABLE 3. Retrieval performance for Medlars collection. 

Average precision for three 

intermediate points of recall 
% Precision Change 

E, 0.5, IO dots 
E, 1.0, 10 dots 

E, 2.0, 10 dots 

E, 0.5, 30 dots 

E, 1.0, 30 dots 

E, 2.0, 30 dots 
Number of queries that fail 

At 10 documents retrieved 
At 30 documents retrieved 

Total relevant retrieved 

At 10 documents retrieved 

At 30 documents retrieved 

Number 

of 

Matches 

0.426 

0.56 
0.66 

0.71 

0.62 

0.60 

0.55 

2 
1 

167 

329 

Full 

Words 

0.522 
22.6 

0.50 
0.60 

0.67 

0.55 

0.52 

0.46 

0 
0 

188 

387 

Best Noise Ranking 

Lovins Porter 

0.574 0.539 

32.5 25.9 

0.50 0.51 

0.60 0.61 

0.66 0.67 

0.53 0.55 

0.49 0.51 

0.43 0.45 

0 0 

0 0 

190 185 

412 394 

S 

0.538 

25.6 
0.50 
0.61 

0.67 

0.55 

0.52 

0.46 

0 

0 

187 
389 

Full 

Words 

0.519 

21.9 
0.49 

0.60 

0.66 
0.57 

0.53 

0.48 

0 

0 

191 
377 

Best idf Ranking 

Lovins Porter 

0.543 0.521 
26.4 22.1 

0.49 0.50 

0.60 0.61 

0.66 0.67 

0.56 0.57 

0.53 0.54 

0.47 0.48 

0 0 
0 0 

194 187 
382 372 

s 

0.525 
22.9 

0.49 

0.60 

0.66 

0.56 

0.53 

0.47 

0 

0 

192 

383 

nique to a technique using term weighting. Again, no 
suffixing technique achieves significant performance im- 
provement. The CACM collection (Table 4) shows the 
most improvement in performance for suffixing, but the 
improvements shown are not statistically significant. 

The lack of meaningful improvement for stemming is 
not because the retrieval is unaffected by stemming. 
Table 5 shows the number of queries that have an improve- 
ment or decrement in performance as measured by the 
number of relevant documents retrieved by either the top 
ten documents or the top thirty documents. The noise rank- 
ing method shows great improvement over simple match- 
ing, with an average of 5 queries showing an improvement 
for each query showing a decrement. However, for all the 
stemming techniques, the number of queries showing im- 

provements in performance is nearly equalled (and sur- 

passed in some cases), by the number of queries showing 
degradation in performance. The only exception to this is 
the CACM collection’s use of the Lovins and Porter 
stemmers, which correlates with the unusually high perfor- 
mance of these stemmers in the CACM collection. For all 
collections, the Lovins stemmer generally produces both 

more improvement and more degradation in performance 
than either the Porter stemmer or the “S” stemmer, with 
the Porter stemmer performance closer to that of the 
Lovins stemmer than to the “S” stemmer. 

In addition to the averaged evaluation measures re- 
ported above, several queries were analyzed individually 

in order to understand how ranks of the individual docu- 
ments were affected by the stemming algorithms. 

TABLE 4. Retrieval performance for CACM collection. 

Number 
of 

Matches 

Full 

Words 

Best Noise Ranking 

Lovins Porter 

Best idf Ranking 

Full 

S Words Lovins Porter S 

Average precision for three 

intermediate points of recall 

% Precision Change 

E, 0.5, 10 dots 

E, 1.0, 10 dots 

E, 2.0, 10 dots 

E, 0.5, 30 dots 

E, 1.0, 30 dots 
E, 2.0, 30 dots 
Number of queries that fail 

At 10 documents retrieved 

At 30 documents retrieved 
Total relevant retrieved 

At 10 documents retrieved 
At 30 documents retrieved 

0.166 0.304 0.318 0.319 0.323 0.305 0.316 0.317 0.317 

82.8 87.2 87.5 89.0 83.5 87.0 87.3 87.3 

0.83 0.74 0.72 0.72 0.73 0.74 0.71 0.72 0.73 

0.85 0.76 0.74 0.74 0.75 0.76 0.74 0.75 0.75 

0.84 0.74 0.73 0.73 0.74 0.74 0.73 0.74 0.74 

0.86 0.81 0.78 0.79 0.80 0.81 0.78 0.78 0.80 

0.84 0.78 0.75 0.75 0.77 0.78 0.75 0.75 0.77 

0.79 0.71 0.67 0.68 0.70 0.71 0.67 0.68 0.70 

20 13 15 14 15 13 15 15 15 

18 13 12 12 12 13 12 12 12 

99 153 171 169 159 152 173 168 159 

201 278 324 313 293 276 321 310 292 
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TABLE 5. Changes on a query-by-query basis. 

Queries with Improvement in Performance 

Cutoff = 10 Cutoff = 30 

Queries with Decrement in Performance 

Cutoff = 10 Cutoff = 30 

Cranfield (225 queries) 

noise ranking vs. match ranking 

full word vs. Lovins 

full word vs. Porter 

full word vs. S stemming 

Medlars (30 queries) 

noise ranking vs. match ranking 

full word vs. Lovins 

full word vs. Porter 
full word vs. S stemming 

CACM (64 queries) 
noise ranking vs. match ranking 

full word vs. Lovins 

full word vs. Porter 

full word vs. S stemming 

118 104 21 24 

51 63 44 33 

49 49 37 31 

34 39 32 33 

17 20 7 

8 13 9 

8 12 11 

6 10 7 

35 38 6 4 

23 25 12 8 

20 23 10 11 

12 16 7 10 

Table 6 shows the expansion of terms in query 109 
from the Cranfield collection by the various stemmers. For 
example, the “5” stemmer adds the words “panel” and 
“aerodynamics” to the query. Of the two terms added to 
the query by the “S” stemmer, only one, “panel,” helps re- 
trieval. This effect can also be seen for the other stemmers, 
with the Porter stemmer adding four useful terms and three 
nonuseful terms, and the Lovins stemmer adding five use- 
ful terms and six nonuseful terms. These nonuseful terms 
cause nonrelevant documents to have higher ranks, and 
therefore often lower the ranks of the relevant documents. 

TABLE 6. Stemmer performance for query 109 of the Cranfield collection 

(Query-“panels subjected to aerodynamic heating”). 

Query 109 illustrates the major problem using 
stemmers - nonrelevant documents receive higher ranking 
scores, often surpassing those of the relevant. The main 
reason for this is the large number of terms being effec- 
tively added to the query (the word variants). Table 7 
shows the average number of terms in a query for the vari- 

ous collections, and the average effective number of terms 
added by each stemmer. The “5” stemmer, which only 

conflates singular/plural variants, adds the least terms, ex- 
panding the query only by a factor of 1.5 on average. The 
Porter stemmer produces more word variants for a given 
term, expanding the query by a factor of 3 on average, and 
the Lovins stemmer produces the largest number of word 
variants mapping to a given root, expanding the query by 
a factor of over 4 on average. The increased number of 

terms leads to a much larger number of documents being 
retrieved, and this requires greater discrimination from the 
ranking algorithm. 

Experiments to Improve Ranking Performance Using 
Stemming 

Reweighting Term Expansions. The first effort to im- 
prove performance was a set of experiments in adjusting 

Full Word S Porter Lovins 

panels” 

subjected 

aerodynamic” 

panel” 

panels” 

subjected 

aerodynamic” 

aerodynamics 

panel” 

panels” 

subjected 

subjecta 

subjective 

subjects 

aerodynamic” 

aerodynamics 

aerodynamically” 

heating” heating” heating” 

heated 

panel” 

panels” 

subjected 

subject” 

subjective 

subjects 

aerodynamic” 

aerodynamics 
aerodynamically” 

aerodynamicist 

heating” 

heated” 

heat” 

heats 

heater 

“Terms that were found in the relevant documents, and therefore become useful 

retrieval terms for this specific query. 
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TABLE 7. Average query expansion by stemming. 

No s Porter Lovins 
Stemming Stemmer Stemmer Stemmer 

Cranfield 

effective number of terms 
total number of documents 

retrieved 
Medlars 

effective number of terms 
total number of documents 

retrieved 
CACM 

effective number of terms 
total number of documents 

retrieved 

10 16 28 39 

736 837 886 943 

11 18 28 40 

296 356 398 444 

13 22 47 58 

894 1253 1403 1459 

term weights of stemmed results. It seemed intuitively 
helpful to use the stemmers as recall devices, increasing 
the pool of potentially relevant documents, but modifying 

the ranking mechanism to enhance precision. One method 
for increasing precision could be to assign less weight to 
those terms added by the stemmer, since they presumably 
are not as precise as the word form used in the query. It is 
possible in the IRX system to assign different term weights 
to each word variant for a given root, rather than treating 
all variants as if they were the same term. Instead of group- 
ing all word variants for a given term as described earlier, 
each term variant was just added to the query, with its indi- 
vidual number of postings, noise, and document frequencies. 

An experiment was performed in which the variants of 
a term added by the stemmer were down-weighted. Two 
different downweightings were used: half the initial term 
weight, and one-quarter the initial term weight, along 
with no reweighting. This allowed the suffixing technique 
to retrieve the extra documents that contained terms that 
were word variants, but gave less weight to these terms 
in ranking. 

Table 8 shows the results from these experiments. The 
first three columns repeat the results shown in Table 2 for 
the Lovins stemmer. The last three columns, labeled “no 
grouping,” show the results using no grouping of the term 
variants, and the three reweighting schemes. There was 

TABLE 8. Downweighting term variants in the Cranfield 1400. 

no improvement in performance, either for the Cranfield 
collection using the Lovins stemmer, or for the other col- 
lections and stemmers (not shown). An examination of 
individual queries indicated two factors in the lack of per- 
formance improvement. 

First, the grouping of stemmed terms allowed their indi- 
vidual document frequencies to be summed for a given 
document, and that sum scaled down using a log, function. 
This means that each additional term variant in a document 
generally adds less to the total document weight for rank- 
ing purposes than a completely different term. Not group- 
ing the term variants causes each term variant to count as 
much as a completely different term, and this is clearly not 
reasonable. 

The second factor is the calculation of the noise mea- 
sure. For a standard grouping of term variants into a single 
concept, the noise of that concept is always higher than 
any of the noise values for the individual term variants. 
This means that terms having many variants tend to have 
high noise values, and this automatically downweights 
term variants. Not grouping the term variants allows their 
individual lower noise values to be used, giving terms with 
many variants more relative weight than terms with fewer 
variants. 

When this effect is combined with the higher document 
frequency counts for no grouping, the result is that docu- 

Best Noise Ranking 

Match Full Lovins 

Ranking Words Grouping 

Lovins Lovins Lovins 
No Grouping No Grouping No Grouping 

No rw tw L/2 rw 114 

Average precision for three 

intermediate points of recall 

% Precision Change 
Total relevant retrieved 

At 10 documents retrieved 

At 30 documents retrieved 

0.265 0.377 0.388 0.309 0.387 0.377 

42.4 45.2 16.5 45.8 42.2 

473 650 655 545 648 644 

784 946 984 848 948 940 
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ments containing more term variants (even of the same 
term) have higher weights than those having matches with 
terms that have few variants. Grouping forces occurrences 
of term variants of a given term to count less than occur- 
rences of multiple unique words, and this is important for 
retrieval performance. Downweighting term variants cor- 
rected this problem to some extent, but not enough to im- 
prove performance over traditional grouping methods. 
Heavy downweighting produced results similar to no stem- 
ming, as the variants added little to a document weight. 

Selective Stemming Based on Query Length. A sec- 
ond effort to improve the suffixing performance was based 
on controlling the number of terms used for retrieval by 
using stemming for only short queries. Short queries, i.e., 
queries with fewer than a given number of (noncommon) 
terms, were expanded using the stemming algorithms, but 
no stemming was used on longer queries. Short queries 
were defined as queries having fewer than 10 terms, which 
account for about half (54%) of the Cranfield query collec- 
tion. To further test the hypothesis, a second division of 
the collection was made in which 69% of the query col- 
lection was considered short (queries having fewer than 
12 terms). 

The use of the suffixing algorithms on only the shorter 
queries did not improve overall performance. The result 
(Table 9) using the Lovins stemmer only for short queries 
was slightly better than no stemming, and slightly worse 
than the initial runs using the Lovins stemmer for all 
queries. The other stemmers and collections behaved in a 
similar manner. The number of terms in the original query 
is not predictive of whether the query performance can be 
improved by stemming. 

TABLE 9. Selective stemming using query length in the Cranfield 1400 

Selective Stemming Based on Term Importance. The 
third effort to improve performance was based on the hy- 
pothesis that adding the term variants of words that are al- 
ready widespread in the database degrades performance, 
and stemming should be applied only to “important” terms 
in the database. Term importance was estimated by the 
term’s distribution in the database, as expressed by the 
noise measure. Three runs were made at different noise 
thresholds, with only terms having a noise below that 
threshold being stemmed using the Lovins stemmer. The 
first threshold of 5.000 stemmed 93% of the unique terms, 
involving 47% of the postings. The second and third 
thresholds of 6.000 and 7.000 stemmed 97% and 98% of 
the unique terms, involving 63% and 70% of the postings, 
respectively. 

The experiments with selective stemming did not im- 
prove performance (Table 10). The results were all slightly 
worse than full stemming, with performance approaching 
that of full stemming at the highest threshold (as ex- 
pected). A closer examination of the queries revealed that 
using the distribution of a term in the database as the crite- 
ria for stemming that term is not satisfactory, as many 
terms important to retrieval for a given query have a high 
frequency and even distribution, and these terms need to 
be expanded by stemming. 

Conclusion 

The use of the three general purpose stemming al- 
gorithms did not result in improvements in retrieval perfor- 
mance in the three test collections examined, as measured 
by classical evaluation techniques. Although individual 

Best Noise Ranking 

Match Full Lavins Lovins Lovins 

Ranking Words All n Terms < 10 n Terms < 12 

Average precision for three 
intermediate points of recall 

% Precision Change 

Total relevant retrieved 
At 10 documents retrieved 

At 30 documents retrieved 

0.265 0.377 0.388 0.383 0.384 
42.1 46.1 44.3 44.9 

473 650 655 659 658 
784 945 984 960 966 

TABLE 10. Selective stemming using term importance in the Cranfield 1400. 

Best Noise Ranking 

Average precision for three 
intermediate points of recall 

% Precision Change 

Total relevant retrieved 
At 10 documents retrieved 

At 30 documents retrieved 

Match 

Ranking 

0.265 

473 

784 

Full Lovins Lovins Lovins Lovins 

Words All < 5.000 < 6.ooO < 7.000 

0.377 0.388 0.376 0.375 0.382 

42.1 46.1 41.9 41.6 44.0 

650 655 643 644 652 
945 984 957 954 961 
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queries were affected by stemming, the number of queries 
with improved performance tended to equal the number 
with poorer performance, thereby resulting in little overall 
change for the entire test collection. Attempts to improve 
performance by changing the weighting of stemmed terms 
which did not occur in the query, or by restricting stem- 
ming to short queries or to “important” terms, did not af- 
fect overall performance. 

Recommendations for the Use of Suffixing in 
Online Environments 

It is important to consider the implications of these re- 
sults in an online environment. First, there are some storage 
savings using stemming. For small databases on machines 
with little storage, a sizable amount of inverted file storage 
can be saved using stemming. A source text of 1.6 mega- 
bytes, with 2653 documents, needs an index of 0.47 mega- 
bytes (0.14 dictionary + 0.33 postings) for unstemmed 
terms, but only 0.38 megabytes (0.08 dictionary + 
0.30 postings) using the Lovins stemmer. However, for the 
larger databases normally used in online retrieval, less 
storage is saved. Using a source text of 50 megabytes, the 
index of unstemmed terms requires 6.7 megabytes (1.7 dic- 
tionary + 5.0 postings), compared to 5.8 megabytes 
(1.5 dictionary + 4.3 postings) using Lovins stemmer, not 
enough difference to justify stemming for storage savings. 

Second, and more important, system performance must 
reflect a user’s expectations, and the use of a stemmer 
(particularly the S stemmer) is intuitive to many users. The 
OKAPI project (Walker & Jones, 1987) did extensive 
research on improving retrieval in online catalogs, and 
strongly recommended using a “weak” stemmer at all 

times, as the “weak” stemmer (fernoval of plurals, “ed” 
and “ing”) seldom hurt performance, but provided signifi- 
cant improvement. They found drops in precision for some 
queries using a “strong” stemmer (a variation of the Porter 
algorithm), and therefore recommended the use of a “strong” 
stemmer only when no matches were found. This implies 
some type of selective stemming should be used, but the 
batch-oriented research reported in this paper showed the 
difficulty of doing this automatically. One method of se- 
lective stemming is the availability of truncation in many 
online commercial retrieval systems. However, Frakes 
(1984) found that automatic stemming performed as well 
as experienced user truncation, and most user studies show 
little actual use of truncation. 

Given today’s retrieval speed and the ease of browsing 
a ranked output, a realistic approach for online retrieval 
would be the automatic use of a stemmer, using an algo- 
rithm like Porter (1980) or Lovins (1968), but providing 
the ability to keep a term from being stemmed (the inverse 
of truncation). If a user found that a term in the stemmed 
query produced too many nonrelevant documents, the 
query could be resubmitted with that term marked for no 
stemming. In this manner, users would have full advantage 
of stemming, but would be able to improve the results of 
those queries hurt by stemming. 

Appendix 

Ranking Using the Noise Measure 

’ (log, Freq k X (noise,,, - noise,)) 
rank, = c 

I=1 log2 M 
where Q = the number of terms in the query 

Freqi, = the frequency of query term k 
in record j 

noise,,, = the maximum value of noise, for a 

given database 
M = the total number of significant terms 

(including duplicates) in the record j 

(length factor) 
” Freq k 

noise, = C ( 
TFreq, 

1% 
TFreq, 
- 

i=l Freq,, 
where IV = the number of records in 

the database 
Freq,, = the frequency of term k 

in record i 
TFreq, = the total frequency of term k in 

the database 

Ranking Using the IDF Weighting Measure 

’ (log2 Freq,, X IDFk) 
rank, = c 

k=l logI M 
where Q = the number of terms in the query 

Freq,, = the frequency of query term k 
in record j 

IDF, = the inverse document frequency weight 
of term k for a given database 

M = the total number of significant terms 

IDF, 

where 

(including duplicates)m the record j 

(length factor) 

1% 
N 

-+1 
Num D, 
N= 

Num D, = 

the number of records in 
the database 
number of documents in the 
collection that contain one or 
more instance of term k 
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