
www.manaraa.com

How Effective Is Suffixing?

Donna Harman*
lister Hill Center for Biomedical Communications, National Library of Medicine, Bethesda, MD 20209

The interaction of suffixing algorithms and ranking
techniques in retrieval performance, particularly in an
online environment, was investigated. Three general
purpose suffixing algorithms were used for retrieval on
the Cranfield 1400, Medlars, and CACM test collections,
with no significant improvement in performance shown
for any of the algorithms. A failure analysis suggested
three modifications to ranking techniques: variable
weighting of term variants, selective stemming depend-
ing on query length, and selective stemming depending
on term importance. None of these modifications im-
proved performance. Recommendations are made re-
garding the uses of suffixing in an online environment.

introduction

Traditional statistically based keyword retrieval systems
have been the subject of experiments for over 30 years.
The use of simple keyword matching as a basis for re-
trieval can produce acceptable results, and the addition of
ranking techniques based on the frequency of a given
matching term within a document collection and/or within
a given document adds considerable improvement (Sparck
Jones, 1972; Salton, 1983).

The conflation of word variants using suffixing al-
gorithms was one of the earliest enhancements to statistical
keyword retrieval systems (Salton, 1971), and has become
so standard a part of most systems that many system
descriptions neglect to mention the use of suffixing, or to
identify the algorithm was used. Suffixing was originally
done for two principle reasons: the large reduction in stor-
age required by a retrieval dictionary (Bell, 1979), and the
increase in performance due to the use of word variants.
Recent research has been more concerned with perfor-
mance improvement than with storage reduction.

The NLM IRX (Information Retrieval Experiment)
project (Benson, Goldstein, Fitzpatrick, Williamson, &
Huntzinger, 1986; Harman, Benson, Fitzpatrick,

*Current address: National Institutes of Standards and Technology,
Gaithersburg, MD 20899.

Received June I, 1988; revised January 4, 1989; accepted January 9,
1989. Not subject to copyright within the United States. Published by
John Wiley & Sons, Inc.

Huntzinger, & Goldstein, 1988) has been investigating
how the performance bounds of traditional statistically
based keyword retrieval systems might be extended. Some
of the initial research was in ranking algorithms, both in
determining what factors are important in ranking, and in
effectively combining these factors to maximize perfor-
mance (Harman, 1986). Subsequently, work has been done
using the most common method of query/document
enhancements: the conflation of word variants using stem-

ming. This area was selected both because of the wide-
spread use of stemming, and because the interaction of
ranking techniques and stemming techniques has not re-
ceived much experimental attention. Word stems have
been used interchangably with full words, and little effort
has been made to modify the ranking techniques to handle
the problems posed in ranking when using a stemmer. The
flexibility of the IRX retrieval system permits easy modifi-
cation of the ranking routines to use all information from a
query, allowing an investigation into the limits of retrieval
using suffixing.

Stemming Algorithms

Most research done on suffixing has been in the area of
producing new suffixing algorithms, particularly al-
gorithms aimed at specific collections or subject areas. An
excellent review of suffixing approaches was done for the
OKAPI project (Walker & Jones, 1987). Major work has
been done in the area of medical English (Pacak, 1978). A
technique for developing a stemming algorithm for a spe-
cific collection was devised for CITE, the NLM end-user
interface to the CATLINE book catalog file (Ulmschneider
& Doszkocs, 1983). Another technique for specific corpuses,
which was developed by Hafer and Weiss (1974), used
statistical properties of successor and predecessor letter
variety counts. The goal of this research was not the devel-
opment of a new stemming algorithm, but to enhance the
performance of existing algorithms.

Three algorithms, an “S” stemming algorithm, the
Lovins (1968) algorithm, and the Porter (1980) algorithm,
were selected for this research effort because they have
different levels of word conflation, a variable that was ex-

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE. 42(1):7-15, 1991 CCC 0002-8231/91/010007-09$04.00

www.manaraa.com

petted to be significant in stemming performance. Al-
though many other stemming algorithms exist, these three
all have widespread usage in the information retrieval
community.

The “S” stemming algorithm, a basic algorithm conflat-
ing singular and plural word forms, is commonly used for
minimal stemming. The rules for a version of this stemmer,
shown in Table 1, are only applied to words of sufficient
length (three or more characters), and are applied in an or-
der dependent manner (i.e., the first applicable rule en-
countered is the only one used). Each rule has three parts;
a specification of the qualifying word ending, such as “ies”;
a list of exceptions; and the necessary action.

The SMART system (Salton, 1971) uses an enhanced
version of the Lovins stemmer that removes many different
suffixes. This stemming algorithm operates in much the
same manner as the S stemmer, although at a higher level
of complexity. First, the longest possible suffix is found
that allows the remaining stem to be of length 2 or greater.
The resulting word stem is then checked against an excep-
tion list for the given suffix, and, if passed, is processed
into the final stem in a cleanup step. This cleanup step
uses a set of rules to produce the proper word ending, such
as removing a double consonant. The algorithm uses auxil-
iary files containing a list of over 260 possible suffixes, a
large exception list, and the cleanup rules.

Porter (1980) developed a stemming algorithm that
looks for about 60 suffixes, producing word variant confla-
tion intermediate between a simple singular-plural tech-
nique and Lovins algorithm. The multistep process uses a
successive removal of short suffixes, rather than a single
removal of the longest possible suffix. Fewer suffixes are
recognized, and no exception list is checked, resulting in
both a much simpler algorithm than the Lovins algorithm,
and no auxiliary files for the suffixes and their accompany-
ing exceptions list.

As an example of stemmer differences, consider the
word “heating,” which has no “S” stems, and therefore is
not grouped together with any other words using this
stemmer. If the Porter stemmer is used, the word “heating”
stems to “heate,” which also happens to be the stem of the
word “heated.” Therefore these two words are grouped to-
gether for retrieval purposes. The Lovins algorithm stems
the word “heating” to “heat,” and groups “heat,” “heated,”
“heater,” “heating,” and “heats” together, as all these
words stem to “heat” using this stemmer.

In terms of storage, the “S” stemmer reduced the num-
ber of unique terms for the Cranfield collection from 8460

TABLE 1, The S stemmer.

IF a word ends in “ies,” but not “eies” or “aies”
THEN “ies” - “v”

IF a word ends in “es,” but not “aes,” “ees,” or “oes”

THEN “es” - “e”

IF a word ends in 3,” but not “us” or ‘3s”
THEN 3” - NULL

full words to 7489 unique stems. The Porter stemmer had
a reduction from 8460 to 6028, and the Lovins stemmer
reduced the number of unique concepts from 8460 to
5226. This could be important in an environment with lim-
ited storage, or for operational systems with large text
files, because the length of the inverted files would be re-
duced as the number of unique terms is reduced.

Modifications to IRX to Handle Suffixing

The IRX retrieval system used in this study parses each
query into noncommon terms. When a stemming algorithm
is used, the noncommon terms are mapped to a list of all
words contained in the document collection that have the
same word stem (as defined by the particular stemming al-
gorithm in effect). These additional word variants are then
added to the query, and a list of all documents containing
one or more of the query terms serves as input to the rank-
ing algorithm.

The ranking algorithm uses term weighting; that is, a

document is ranked according to a normalized score
formed by summing the weights of the terms occurring in
the document that match terms in the query. This is
equivalent to a weighted inner product between the query
and the document. These weights are based on both the
importance of the term within a given document (as mea-

sured by the log, of the frequency of the term in that docu-
ment), and on the importance of a term within the entire
collection (as measured by either its noise value or its in-
verse document frequency weight). The ranking equations
are given in the Appendix, and details of the ranking
method can be found in Harman (1986).

Modifications to the ranking algorithm were required in
order to reflect the traditional suffixing philosophy that all
term variants for a given term be treated as a single con-

cept. That is, the words “heat,” “heats,” “heater,” “heat-
ing,” and “heated” are traditionally represented by single
concept (using the Lovins stemming algorithm) and term
occurrences are counted for that concept rather than for the
individual terms. The ranking algorithm was modified in
two ways to handle suffixes in this manner. First, the
document frequency of an expanded term in a given docu-
ment becomes the combined document frequencies for all
term variants of that term in that document. Second, in-
stead of using the noise and number of postings for a given
term, as determined by input from the parser, a special file
of noise values and number of postings had to be created
for each stemmer to obtain the correct noise and number of
postings. This file was created by calculating the noise
measure based on the term distribution of all term variants
(instead of a single term), and by calculating the number
of postings for all term variants, rather than for a single
term. The ranker had to do a file lookup for each query
term to determine its noise and number of postings. These
modifications allowed IRX to emulate traditional suffix-
ing. The alternative would have required separate inverted
files for each stemmer.

8 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-January 1991

www.manaraa.com

Evaluation

Abstracts and titles from the Cranfield collection (with
225 queries and 1400 documents), comprised the major
test collection for this study. The Medlars collection
(30 queries and 1033 documents), and the CACM collec-
tion (64 queries and 3204 documents) were used to provide
information about the variation of stemming performance
across different subject areas and test collections.

In addition to the standard recall/precision measures,
with SMART system averaging (Salton, 1971), several
methods more suited to an interactive retrieval environ-
ment were adopted. The interactive environment returns

lists of the top ranked documents, and allows the users to
scan titles of a group of documents a screenful at a time,
so that the ranking of individual documents within the
screenful is not as important as the total number of rele-
vant titles within a screen. Furthermore, the number of
relevant documents in the first few screens is far more im-
portant for the user than the number of relevant in the last
screenfuls. Three measures were selected which evaluate
performance at given rank cutoff points, such as those cor-
responding to a screenful of document titles.

The first measure, the E measure (Van Rijsbergen,
1979), is a weighted combination of recall and precision
that evaluates a set of retrieved documents at a given cut-
off, ignoring the ranking within that set. The measure may
have weights of 0.5, 1.0, and 2.0 which correspond, re-
spectively, to attaching half the importance to recall as to
precision, equal importance to both, and double impor-
tance to recall. A lower E value indicates a more effective
performance.

A second measure, the total number of relevant docu-
ments retrieved by a given cutoff, was also calculated.
Cutoffs of 10 and 30 documents were used, with ten re-
flecting a minimum number a user might be expected to

TABLE 2. Retrieval performance for Cranfteld 225.

scan, and 30 being an assumed upper limit of what a user
would scan before query modification.

The third measure applicable to the interactive environ-
ment is the number of queries that retrieve no relevant
documents by the given cutoff. This measure is important
because many types of query modification techniques,
such as relevance feedback, require relevant documents to
be in the retrieved set to work well. These measures were
all used in Croft (1983) as complementary measures to the
standard recall/precision evaluation.

Results

Initial Stemming Results

The results for the Cranfield collection are given in
Table 2. It can be seen that there is a very significant in-
crease in performance (42.4%) from a simple ranking tech-
nique (number of term matches between the queries and
the documents) to a technique using term weighting (full
words and the noise ranking algorithm, see Appendix).
None of the three suffixing techniques, however, achieve
any further significant improvement over term weighting,
using either the noise measure or the inverted document
frequency measure for term weighting. This agrees with

earlier results (Lennon, Peirce, Tarry, & Willett, 1981)
using the Cranfield collection (titles only), and compar-
ing the Lovins and Porter algorithms, when very little im-
provement in retrieval performance was found. Both the
noise measure and the inverse document frequency weight
measure were used in this study to show that the research
results apply using either measure of term distribution
within an entire collection.

The Medlars collection (Table 3) indicates a 22.2% im-
provement in performance from a simple ranking tech-

Average precision for three
intermediate points of recall

% Precision Change
E, 0.5, 10 dots
E, 1.0, 10 dots
E, 2.0, 10 dots

E, 0.5, 30 dots
E, 1.0, 30 dots
E, 2.0, 30 dots

Number of queries that fail
At 10 documents retrieved
At 30 documents retrieved

Total relevant retrieved
At 10 documents retrieved

At 30 documents retrieved

Number

of

Matches

0.265

0.78
0.77
0.74

0.87
0.82
0.73

35
16

473

784

Full

Words

0.377

42.4
0.71
0.68
0.64

0.84
0.79
0.67

21
9

650

946

Best Noise Ranking

Lovins Porter

0.388 0.402

45.2 49.2
0.70 0.70
0.68 0.68
0.64 0.63

0.83 0.83
0.78 0.78
0.66 0.67

14 15
8 8

655 666

984 972

s

0.397

47.7
0.70
0.68
0.64

0.84
0.78
0.67

15
8

654

958

Full

Words

0.368

39. I
0.72
0.70
0.65

0.84
0.79
0.68

21
10

628

938

Best idf Ranking

Lovins Porter

0.380 0.392
41.3 45.7

0.71 0.71
0.69 0.69
0.65 0.64
0.84 0.84
0.78 0.78
0.67 0.67

17 16
7 6

636 648
958 956

s

0.391

45.4
0.71
0.68
0.64

0.84
0.79
0.67

15
8

651

952

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-January 1991 9

www.manaraa.com

TABLE 3. Retrieval performance for Medlars collection.

Average precision for three

intermediate points of recall
% Precision Change

E, 0.5, IO dots
E, 1.0, 10 dots

E, 2.0, 10 dots

E, 0.5, 30 dots

E, 1.0, 30 dots

E, 2.0, 30 dots
Number of queries that fail

At 10 documents retrieved
At 30 documents retrieved

Total relevant retrieved

At 10 documents retrieved

At 30 documents retrieved

Number

of

Matches

0.426

0.56
0.66

0.71

0.62

0.60

0.55

2
1

167

329

Full

Words

0.522
22.6

0.50
0.60

0.67

0.55

0.52

0.46

0
0

188

387

Best Noise Ranking

Lovins Porter

0.574 0.539

32.5 25.9

0.50 0.51

0.60 0.61

0.66 0.67

0.53 0.55

0.49 0.51

0.43 0.45

0 0

0 0

190 185

412 394

S

0.538

25.6
0.50
0.61

0.67

0.55

0.52

0.46

0

0

187
389

Full

Words

0.519

21.9
0.49

0.60

0.66
0.57

0.53

0.48

0

0

191
377

Best idf Ranking

Lovins Porter

0.543 0.521
26.4 22.1

0.49 0.50

0.60 0.61

0.66 0.67

0.56 0.57

0.53 0.54

0.47 0.48

0 0
0 0

194 187
382 372

s

0.525
22.9

0.49

0.60

0.66

0.56

0.53

0.47

0

0

192

383

nique to a technique using term weighting. Again, no
suffixing technique achieves significant performance im-
provement. The CACM collection (Table 4) shows the
most improvement in performance for suffixing, but the
improvements shown are not statistically significant.

The lack of meaningful improvement for stemming is
not because the retrieval is unaffected by stemming.
Table 5 shows the number of queries that have an improve-
ment or decrement in performance as measured by the
number of relevant documents retrieved by either the top
ten documents or the top thirty documents. The noise rank-
ing method shows great improvement over simple match-
ing, with an average of 5 queries showing an improvement
for each query showing a decrement. However, for all the
stemming techniques, the number of queries showing im-

provements in performance is nearly equalled (and sur-

passed in some cases), by the number of queries showing
degradation in performance. The only exception to this is
the CACM collection’s use of the Lovins and Porter
stemmers, which correlates with the unusually high perfor-
mance of these stemmers in the CACM collection. For all
collections, the Lovins stemmer generally produces both

more improvement and more degradation in performance
than either the Porter stemmer or the “S” stemmer, with
the Porter stemmer performance closer to that of the
Lovins stemmer than to the “S” stemmer.

In addition to the averaged evaluation measures re-
ported above, several queries were analyzed individually

in order to understand how ranks of the individual docu-
ments were affected by the stemming algorithms.

TABLE 4. Retrieval performance for CACM collection.

Number
of

Matches

Full

Words

Best Noise Ranking

Lovins Porter

Best idf Ranking

Full

S Words Lovins Porter S

Average precision for three

intermediate points of recall

% Precision Change

E, 0.5, 10 dots

E, 1.0, 10 dots

E, 2.0, 10 dots

E, 0.5, 30 dots

E, 1.0, 30 dots
E, 2.0, 30 dots
Number of queries that fail

At 10 documents retrieved

At 30 documents retrieved
Total relevant retrieved

At 10 documents retrieved
At 30 documents retrieved

0.166 0.304 0.318 0.319 0.323 0.305 0.316 0.317 0.317

82.8 87.2 87.5 89.0 83.5 87.0 87.3 87.3

0.83 0.74 0.72 0.72 0.73 0.74 0.71 0.72 0.73

0.85 0.76 0.74 0.74 0.75 0.76 0.74 0.75 0.75

0.84 0.74 0.73 0.73 0.74 0.74 0.73 0.74 0.74

0.86 0.81 0.78 0.79 0.80 0.81 0.78 0.78 0.80

0.84 0.78 0.75 0.75 0.77 0.78 0.75 0.75 0.77

0.79 0.71 0.67 0.68 0.70 0.71 0.67 0.68 0.70

20 13 15 14 15 13 15 15 15

18 13 12 12 12 13 12 12 12

99 153 171 169 159 152 173 168 159

201 278 324 313 293 276 321 310 292

10 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-January 1991

www.manaraa.com

TABLE 5. Changes on a query-by-query basis.

Queries with Improvement in Performance

Cutoff = 10 Cutoff = 30

Queries with Decrement in Performance

Cutoff = 10 Cutoff = 30

Cranfield (225 queries)

noise ranking vs. match ranking

full word vs. Lovins

full word vs. Porter

full word vs. S stemming

Medlars (30 queries)

noise ranking vs. match ranking

full word vs. Lovins

full word vs. Porter
full word vs. S stemming

CACM (64 queries)
noise ranking vs. match ranking

full word vs. Lovins

full word vs. Porter

full word vs. S stemming

118 104 21 24

51 63 44 33

49 49 37 31

34 39 32 33

17 20 7

8 13 9

8 12 11

6 10 7

35 38 6 4

23 25 12 8

20 23 10 11

12 16 7 10

Table 6 shows the expansion of terms in query 109
from the Cranfield collection by the various stemmers. For
example, the “5” stemmer adds the words “panel” and
“aerodynamics” to the query. Of the two terms added to
the query by the “S” stemmer, only one, “panel,” helps re-
trieval. This effect can also be seen for the other stemmers,
with the Porter stemmer adding four useful terms and three
nonuseful terms, and the Lovins stemmer adding five use-
ful terms and six nonuseful terms. These nonuseful terms
cause nonrelevant documents to have higher ranks, and
therefore often lower the ranks of the relevant documents.

TABLE 6. Stemmer performance for query 109 of the Cranfield collection

(Query-“panels subjected to aerodynamic heating”).

Query 109 illustrates the major problem using
stemmers - nonrelevant documents receive higher ranking
scores, often surpassing those of the relevant. The main
reason for this is the large number of terms being effec-
tively added to the query (the word variants). Table 7
shows the average number of terms in a query for the vari-

ous collections, and the average effective number of terms
added by each stemmer. The “5” stemmer, which only

conflates singular/plural variants, adds the least terms, ex-
panding the query only by a factor of 1.5 on average. The
Porter stemmer produces more word variants for a given
term, expanding the query by a factor of 3 on average, and
the Lovins stemmer produces the largest number of word
variants mapping to a given root, expanding the query by
a factor of over 4 on average. The increased number of

terms leads to a much larger number of documents being
retrieved, and this requires greater discrimination from the
ranking algorithm.

Experiments to Improve Ranking Performance Using
Stemming

Reweighting Term Expansions. The first effort to im-
prove performance was a set of experiments in adjusting

Full Word S Porter Lovins

panels”

subjected

aerodynamic”

panel”

panels”

subjected

aerodynamic”

aerodynamics

panel”

panels”

subjected

subjecta

subjective

subjects

aerodynamic”

aerodynamics

aerodynamically”

heating” heating” heating”

heated

panel”

panels”

subjected

subject”

subjective

subjects

aerodynamic”

aerodynamics
aerodynamically”

aerodynamicist

heating”

heated”

heat”

heats

heater

“Terms that were found in the relevant documents, and therefore become useful

retrieval terms for this specific query.

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-January 1991 11

www.manaraa.com

TABLE 7. Average query expansion by stemming.

No s Porter Lovins
Stemming Stemmer Stemmer Stemmer

Cranfield

effective number of terms
total number of documents

retrieved
Medlars

effective number of terms
total number of documents

retrieved
CACM

effective number of terms
total number of documents

retrieved

10 16 28 39

736 837 886 943

11 18 28 40

296 356 398 444

13 22 47 58

894 1253 1403 1459

term weights of stemmed results. It seemed intuitively
helpful to use the stemmers as recall devices, increasing
the pool of potentially relevant documents, but modifying

the ranking mechanism to enhance precision. One method
for increasing precision could be to assign less weight to
those terms added by the stemmer, since they presumably
are not as precise as the word form used in the query. It is
possible in the IRX system to assign different term weights
to each word variant for a given root, rather than treating
all variants as if they were the same term. Instead of group-
ing all word variants for a given term as described earlier,
each term variant was just added to the query, with its indi-
vidual number of postings, noise, and document frequencies.

An experiment was performed in which the variants of
a term added by the stemmer were down-weighted. Two
different downweightings were used: half the initial term
weight, and one-quarter the initial term weight, along
with no reweighting. This allowed the suffixing technique
to retrieve the extra documents that contained terms that
were word variants, but gave less weight to these terms
in ranking.

Table 8 shows the results from these experiments. The
first three columns repeat the results shown in Table 2 for
the Lovins stemmer. The last three columns, labeled “no
grouping,” show the results using no grouping of the term
variants, and the three reweighting schemes. There was

TABLE 8. Downweighting term variants in the Cranfield 1400.

no improvement in performance, either for the Cranfield
collection using the Lovins stemmer, or for the other col-
lections and stemmers (not shown). An examination of
individual queries indicated two factors in the lack of per-
formance improvement.

First, the grouping of stemmed terms allowed their indi-
vidual document frequencies to be summed for a given
document, and that sum scaled down using a log, function.
This means that each additional term variant in a document
generally adds less to the total document weight for rank-
ing purposes than a completely different term. Not group-
ing the term variants causes each term variant to count as
much as a completely different term, and this is clearly not
reasonable.

The second factor is the calculation of the noise mea-
sure. For a standard grouping of term variants into a single
concept, the noise of that concept is always higher than
any of the noise values for the individual term variants.
This means that terms having many variants tend to have
high noise values, and this automatically downweights
term variants. Not grouping the term variants allows their
individual lower noise values to be used, giving terms with
many variants more relative weight than terms with fewer
variants.

When this effect is combined with the higher document
frequency counts for no grouping, the result is that docu-

Best Noise Ranking

Match Full Lovins

Ranking Words Grouping

Lovins Lovins Lovins
No Grouping No Grouping No Grouping

No rw tw L/2 rw 114

Average precision for three

intermediate points of recall

% Precision Change
Total relevant retrieved

At 10 documents retrieved

At 30 documents retrieved

0.265 0.377 0.388 0.309 0.387 0.377

42.4 45.2 16.5 45.8 42.2

473 650 655 545 648 644

784 946 984 848 948 940

12 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-January 1991

www.manaraa.com

ments containing more term variants (even of the same
term) have higher weights than those having matches with
terms that have few variants. Grouping forces occurrences
of term variants of a given term to count less than occur-
rences of multiple unique words, and this is important for
retrieval performance. Downweighting term variants cor-
rected this problem to some extent, but not enough to im-
prove performance over traditional grouping methods.
Heavy downweighting produced results similar to no stem-
ming, as the variants added little to a document weight.

Selective Stemming Based on Query Length. A sec-
ond effort to improve the suffixing performance was based
on controlling the number of terms used for retrieval by
using stemming for only short queries. Short queries, i.e.,
queries with fewer than a given number of (noncommon)
terms, were expanded using the stemming algorithms, but
no stemming was used on longer queries. Short queries
were defined as queries having fewer than 10 terms, which
account for about half (54%) of the Cranfield query collec-
tion. To further test the hypothesis, a second division of
the collection was made in which 69% of the query col-
lection was considered short (queries having fewer than
12 terms).

The use of the suffixing algorithms on only the shorter
queries did not improve overall performance. The result
(Table 9) using the Lovins stemmer only for short queries
was slightly better than no stemming, and slightly worse
than the initial runs using the Lovins stemmer for all
queries. The other stemmers and collections behaved in a
similar manner. The number of terms in the original query
is not predictive of whether the query performance can be
improved by stemming.

TABLE 9. Selective stemming using query length in the Cranfield 1400

Selective Stemming Based on Term Importance. The
third effort to improve performance was based on the hy-
pothesis that adding the term variants of words that are al-
ready widespread in the database degrades performance,
and stemming should be applied only to “important” terms
in the database. Term importance was estimated by the
term’s distribution in the database, as expressed by the
noise measure. Three runs were made at different noise
thresholds, with only terms having a noise below that
threshold being stemmed using the Lovins stemmer. The
first threshold of 5.000 stemmed 93% of the unique terms,
involving 47% of the postings. The second and third
thresholds of 6.000 and 7.000 stemmed 97% and 98% of
the unique terms, involving 63% and 70% of the postings,
respectively.

The experiments with selective stemming did not im-
prove performance (Table 10). The results were all slightly
worse than full stemming, with performance approaching
that of full stemming at the highest threshold (as ex-
pected). A closer examination of the queries revealed that
using the distribution of a term in the database as the crite-
ria for stemming that term is not satisfactory, as many
terms important to retrieval for a given query have a high
frequency and even distribution, and these terms need to
be expanded by stemming.

Conclusion

The use of the three general purpose stemming al-
gorithms did not result in improvements in retrieval perfor-
mance in the three test collections examined, as measured
by classical evaluation techniques. Although individual

Best Noise Ranking

Match Full Lavins Lovins Lovins

Ranking Words All n Terms < 10 n Terms < 12

Average precision for three
intermediate points of recall

% Precision Change

Total relevant retrieved
At 10 documents retrieved

At 30 documents retrieved

0.265 0.377 0.388 0.383 0.384
42.1 46.1 44.3 44.9

473 650 655 659 658
784 945 984 960 966

TABLE 10. Selective stemming using term importance in the Cranfield 1400.

Best Noise Ranking

Average precision for three
intermediate points of recall

% Precision Change

Total relevant retrieved
At 10 documents retrieved

At 30 documents retrieved

Match

Ranking

0.265

473

784

Full Lovins Lovins Lovins Lovins

Words All < 5.000 < 6.ooO < 7.000

0.377 0.388 0.376 0.375 0.382

42.1 46.1 41.9 41.6 44.0

650 655 643 644 652
945 984 957 954 961

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-January 1991 13

www.manaraa.com

queries were affected by stemming, the number of queries
with improved performance tended to equal the number
with poorer performance, thereby resulting in little overall
change for the entire test collection. Attempts to improve
performance by changing the weighting of stemmed terms
which did not occur in the query, or by restricting stem-
ming to short queries or to “important” terms, did not af-
fect overall performance.

Recommendations for the Use of Suffixing in
Online Environments

It is important to consider the implications of these re-
sults in an online environment. First, there are some storage
savings using stemming. For small databases on machines
with little storage, a sizable amount of inverted file storage
can be saved using stemming. A source text of 1.6 mega-
bytes, with 2653 documents, needs an index of 0.47 mega-
bytes (0.14 dictionary + 0.33 postings) for unstemmed
terms, but only 0.38 megabytes (0.08 dictionary +
0.30 postings) using the Lovins stemmer. However, for the
larger databases normally used in online retrieval, less
storage is saved. Using a source text of 50 megabytes, the
index of unstemmed terms requires 6.7 megabytes (1.7 dic-
tionary + 5.0 postings), compared to 5.8 megabytes
(1.5 dictionary + 4.3 postings) using Lovins stemmer, not
enough difference to justify stemming for storage savings.

Second, and more important, system performance must
reflect a user’s expectations, and the use of a stemmer
(particularly the S stemmer) is intuitive to many users. The
OKAPI project (Walker & Jones, 1987) did extensive
research on improving retrieval in online catalogs, and
strongly recommended using a “weak” stemmer at all

times, as the “weak” stemmer (fernoval of plurals, “ed”
and “ing”) seldom hurt performance, but provided signifi-
cant improvement. They found drops in precision for some
queries using a “strong” stemmer (a variation of the Porter
algorithm), and therefore recommended the use of a “strong”
stemmer only when no matches were found. This implies
some type of selective stemming should be used, but the
batch-oriented research reported in this paper showed the
difficulty of doing this automatically. One method of se-
lective stemming is the availability of truncation in many
online commercial retrieval systems. However, Frakes
(1984) found that automatic stemming performed as well
as experienced user truncation, and most user studies show
little actual use of truncation.

Given today’s retrieval speed and the ease of browsing
a ranked output, a realistic approach for online retrieval
would be the automatic use of a stemmer, using an algo-
rithm like Porter (1980) or Lovins (1968), but providing
the ability to keep a term from being stemmed (the inverse
of truncation). If a user found that a term in the stemmed
query produced too many nonrelevant documents, the
query could be resubmitted with that term marked for no
stemming. In this manner, users would have full advantage
of stemming, but would be able to improve the results of
those queries hurt by stemming.

Appendix

Ranking Using the Noise Measure

’ (log, Freq k X (noise,,, - noise,))
rank, = c

I=1 log2 M
where Q = the number of terms in the query

Freqi, = the frequency of query term k
in record j

noise,,, = the maximum value of noise, for a

given database
M = the total number of significant terms

(including duplicates) in the record j

(length factor)
” Freq k

noise, = C (
TFreq,

1%
TFreq,
-

i=l Freq,,
where IV = the number of records in

the database
Freq,, = the frequency of term k

in record i
TFreq, = the total frequency of term k in

the database

Ranking Using the IDF Weighting Measure

’ (log2 Freq,, X IDFk)
rank, = c

k=l logI M
where Q = the number of terms in the query

Freq,, = the frequency of query term k
in record j

IDF, = the inverse document frequency weight
of term k for a given database

M = the total number of significant terms

IDF,

where

(including duplicates)m the record j

(length factor)

1%
N

-+1
Num D,
N=

Num D, =

the number of records in
the database
number of documents in the
collection that contain one or
more instance of term k

Acknowledgments

Thanks to the rest of the IRX project team, Dennis Ben-
son, Larry Fitzpatrick, Charles Goldstein, and Rand
Huntzinger, who made this research possible. In particular,
thanks to Larry Fitzpatrick for his patient help with UNIX
and to Dennis Benson and Charles Goldstein for their
many helpful comments. Peter Willett provided the excel-
lent reference to the OKAPI project.

References

Bell C., & Jones, K. P. (1979). Toward everyday language information

retrieval systems via minicomputers. Joournal of the American Society

for Information Science, 30, 334-338.

14 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-January 1991

www.manaraa.com

Benson D., Goldstein C. M., Fitzpatrick L., Williamson D., &

Huntzinger R. (1986). Developing tools for online medical reference

works. In Proceedings of Medinfo 86. (pp. 558-560). Amsterdam: El-

sevier Science Publishers B. V.

Croft W. B. (1983). Experiments with representation in a document re-
trieval system. Information Technology: Research and Development, 2,

l-21.

Frakes, W. B. (1984). Term conflation for information retrieval, In C. J.

van Rijsbergen (Ed.), Research and development in information re-

rrieval (pp. 383-389). Cambridge University,Press.

Hafer M., & Weiss S. (1974). Word segmentation by letter successor va-

rieties, Information Storage and Retrieval, 10, 371-385.

Harman D. (1986). An experimental study of factors important in docu-

ment ranking, In Proceedings of the 1986 ACM Conference on Re-

search and Developments in Information Retrieval (pp. 186-193).

Pisa, 1986.

Harman D., Benson D., Fitzpatrick L., Huntzinger R. & Goldstein C.

(1988). IRX: An information retrieval system for experimentation and

user applications. In Proceedings of the 1988 RIAO Conference. Cam-

bridge, Mass.

Lennon M.. Peirce D., Tarry B., & Willett P. (1981). An evaluation of

some conflation algorithms for information retrieval. Journal of Infor-

mation Science, 3. 177-188.

Lovins J. B. (1968). Development of a stemming algorithm. Mechanical

Translation and Computational Linguistics, II, 22-3 1.

Pacak M. G., & Pratt A. W. (1978). Identification and transformation of

terminal morphemes in medical english, Part II, Methods of Informa-

tion in Medicine., 17, 95- 100.
Porter M. F. (1980). An algorithm for suffix stripping. Program, 14,

130-137.

Salton G. (1971). The SMART retrieval system-e.rperiments in automatic

document processing. Englewood Cliffs, N.J: Prentice-Hall.

Salton G., & McGill M. (1983). Introduction to modern information re-

trieval. New York: McGraw-Hill.

Sparck-Jones, K. (1972). A statistical interpretation of term specificity

and its application in retrieval. Journal of Documentation, 28, 11-20.

Ulmschneider J. & Doszkocs T. (1983). A practical stemming algorithm

for online search assistance. Online Revien,. 7. 301-315.

VanRijsbergen C. J. (1979). Information retrieval. London: Butterworths.

Walker, S., & Jones, R. M. (1987). Improving subject retrieval in online

catalogues. British Library Research Paper 24.

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE-January 1991 15

	Introduction
	Stemming Algorithms
	TABLE 1.

	Modifications to IRX to Handle Suffixing
	Evaluation
	TABLE 2.

	Results
	TABLE 3.
	TABLE 4.
	TABLE 5.
	TABLE 6.
	TABLE 7.
	TABLE 8.
	TABLE 9.
	TABLE 10.

	Conclusion
	Recommendations for the Use of Suffixing in Online Environments
	Acknowledgments
	References

